Measurement of photoluminescence according to DIN 67510-1:2009
(2 appendices)

Identification
Object One photoluminescent exit sign with “LunaCLASSIC” layer, size 200 × 380 mm. See pictures in appendix 1.
Object state Upon arrival the object had no visual damages.
Location Borås, Sweden
Measurement date May 29–31, 2018

Measurement methods and procedures
The measurements follows RISE method 2515 in applicable parts. The sample was exposed during a time of 5 minutes at 1000 lux from an unfiltered 150 W xenon lamp. The illuminance at the measuring plane was measured with a luxmeter, Hagner, Model S4. After 5 minutes the xenon lamp was turned off and a luminance meter, Photo Research Model 1980A, connected to a computer, was recording the luminance every minute for 10 hours. A measuring spot of about ∅ 40 mm was used. The sample was kept under dark conditions for at least 48 h prior to excitation.

The colour during excitation and attenuation was measured with a spectrometer, Spectrascan PR-735. The excitation was done with the above light source at 1000 lux for 5 minutes and the attenuation colour measurement started about 15 seconds after the lamp was switched off.

In accordance with section 4.5 in DIN 67510-1, a logarithmic parabolic extrapolation of the results was made in order to determine the time when the luminance is 0.3 mcd/m², the decay time.

Measurement conditions
Room temperature (23 ± 1) °C
Relative humidity (45 ± 5) %
Illumination 1000 lx perpendicular to the sample, Xenon lamp

Results
The results only refer to the object specified in this document.
Table 1: Compilation of the results for luminance and calculated decay time.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>2 min</th>
<th>10 min</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>Decay time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LunaCLASSIC</td>
<td>1180</td>
<td>240</td>
<td>72,0</td>
<td>32,3</td>
<td>13,9</td>
<td>2370</td>
</tr>
</tbody>
</table>

Table 2: CIE 1931 chromaticity coordinates for 2° standard observer.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>During excitation</th>
<th>During attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>LunaCLASSIC</td>
<td>0,342</td>
<td>0,372</td>
</tr>
</tbody>
</table>

Measuring uncertainty

The measuring uncertainty is ±5 % of the measured luminance values, but not less than ±0,05 mcd/m². The uncertainty of the given values for x and y is ±0,005.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k = 2$, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty has been determined in accordance with EA Publication EA-4/02.

Equipment

Xenon-lamp 150 W, SP inv.no. 502959
Luminance meter Pritchard PR 1980, SP inv.no. 500721
Luximeter Hagner S4, SP inv.no. 901737
Spectrometer Spectrascan PR-735, SP inv.no. 901491

RISE Research Institutes of Sweden AB
Measurement Science and Technology - Time and Optics

Performed by

Examined by

Signed by: Maria Nilsson Tengelin
Reason: I am the author of this document
Date & Time: 2018-05-31 16:53:16.02:00

Signed by: Stefan Källberg
Reason: I have reviewed this document
Date & Time: 2018-06-01 16:31:46.02:00

Maria Nilsson Tengelin
Stefan Källberg

Appendices
Pictures of the test object
Measured luminance, table and diagram
Pictures of the test object

Exit sign LunaCLASSIC

= Measuring position

Exit sign – printed text, bottom left corner

Exit sign – printed text, bottom right corner
Measured luminance, table and diagram

Table 1. Luminance during attenuation (after 5 min exposure at 1000 lux).

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Luminance (mcd/m²)</th>
<th>Time (min)</th>
<th>Luminance (mcd/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>490</td>
<td>65</td>
<td>29,3</td>
</tr>
<tr>
<td>10</td>
<td>240</td>
<td>70</td>
<td>26,8</td>
</tr>
<tr>
<td>15</td>
<td>155</td>
<td>75</td>
<td>24,8</td>
</tr>
<tr>
<td>20</td>
<td>113</td>
<td>80</td>
<td>22,9</td>
</tr>
<tr>
<td>25</td>
<td>88,3</td>
<td>85</td>
<td>21,3</td>
</tr>
<tr>
<td>30</td>
<td>72,0</td>
<td>90</td>
<td>19,9</td>
</tr>
<tr>
<td>35</td>
<td>60,2</td>
<td>95</td>
<td>18,6</td>
</tr>
<tr>
<td>40</td>
<td>51,7</td>
<td>100</td>
<td>17,4</td>
</tr>
<tr>
<td>45</td>
<td>45,2</td>
<td>105</td>
<td>16,4</td>
</tr>
<tr>
<td>50</td>
<td>40,1</td>
<td>110</td>
<td>15,5</td>
</tr>
<tr>
<td>55</td>
<td>35,7</td>
<td>115</td>
<td>14,7</td>
</tr>
<tr>
<td>60</td>
<td>32,3</td>
<td>120</td>
<td>13,9</td>
</tr>
</tbody>
</table>

Diagram 1. Luminance during attenuation (after 5 min exposure at 1000 lux).